Actin filament labels for localizing protein components in large complexes viewed by electron microscopy

M. ELIZABETH STROUPE,1,2 CHEN XU,2 BRUCE L. GOODE,2,3 and NIKOLAUS GRIGORIEFF1,2

1Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454, USA
2Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
3Department of Biology, Brandeis University, Waltham, MA 02454, USA

ABSTRACT

Localizing specific components in three-dimensional reconstructions of protein complexes visualized in an electron microscope increases the scientific value of those structures. Subunits are often identified within the complex by labeling; however, unless the label produces directly visible features, it must be detected by computational comparison with unlabeled complex. To bypass this step, we generated a cloneable tag from the actin-nucleating protein Spire that produces a directly visible “pointer” to the subunit after actin polymerization. We have used this new label to identify the intron of the C complex spliceosome to its small domain by fusing the 10 kDa Spire moiety to the affinity label that binds recombinant stem loops in the pre-mRNA substrate and assembling an actin filament on the particle.

Keywords: spliceosome; RNA; actin; single particle; electron microscopy; Spire

INTRODUCTION

Localizing individual components in single particle electron microscopy (EM) reconstructions of large protein complexes is a major challenge in interpreting these structures. Identifying the position of key components can provide anchor points to facilitate docking of atomic resolution coordinates into molecular envelopes determined by single particle EM. Knowing where components are may also shed light on the possible role of those components within a complex. Current methods for labeling single particle EM reconstructions include adding gold label, adding antibodies (with or without gold conjugates), adding mass by recombinant protein fusions, or deletion mapping of domains (Jurica et al. 2002; Wolf et al. 2003; Kim et al. 2004; Stroupe et al. 2006).

Each of these methods has unique advantages and disadvantages. Covalently added 5 nm gold clusters can be seen directly on the specimen to provide information about subunit positions at moderate (2 nm) resolution. However, the target requires an attachment site, such as a single, surface-accessible cysteine to achieve specific labeling. Furthermore, labeling is usually much less than 100%, and the use of gold labels often leads to non-specific labeling and aggregation of label and/or sample. Monoclonal antibodies, on the other hand, do not require the engineering of specific attachment sites. They are exogenously added and can be used to provide tags of different sizes. For example, antibody tags can be directly visualized in micrographs by coupling them to gold clusters, or their size can be increased by adding a secondary antibody. Similar to gold labels, labeling is usually substoichiometric, even with excess antibody added, which may require another purification step to remove unbound labels. Also, unless an additional heavy atom label is used, an antibody label cannot be localized easily in raw images of heterogeneous samples. In this case, averaging over many labeled particles is required to localize the label. Labeling can also be achieved by adding or deleting domains of subunits. This is appealing because these modifications are stoichiometric without additional purification. However, additions or deletions may affect sample integrity, and averaging may be required to localize the label in larger and/or heterogeneous particles.

The ideal label would have high affinity, specific binding, low background, be adjustable in size, and be directly and unambiguously identifiable in raw micrographs to avoid the need for image averaging. This last criterion is of particular importance for reconstructions of large structures whose
resolution is limited by compositional heterogeneity, such as
the C complex spliceosome (Jurica et al. 2004). The
spliceosome is a highly dynamic assembly of RNAs and
proteins that removes intervening non-coding regions
(introns) from the coding regions (exons) of nascent pre-
mRNA transcripts. Various spliceosome assemblies have
molecular masses of several megadaltons, increasing the
challenge to their structure determination (Jurica and
Moore 2003).

C complex has a diameter of about 20 nm and three
discernable domains (Jurica et al. 2004). The largest
domain is believed to be the U5 snRNP, one major compo-
nent that accounts for about 1 MDa of mass (Sander et al.
2006). This hypothesis further places Prp19 in the arm
domain and places SF3b, which is part of the U2 snRNP
domain, within the smallest domain (Jurica et al. 2004). Recent labeling of the pre-mRNA 5' and
interacts with the intron, within the smallest domain
(Jurica et al. 2004). This hypothesis further places Prp19 in the arm
domain and places SF3b, which is part of the U2 snRNP
domain and places SF3b, which is part of the U2 snRNP
and interacts with the intron, within the smallest domain
(Jurica et al. 2004). Recent labeling of the pre-mRNA 5'
and 3' exons using a dimeric, donut-shaped protein fused
to a sequence-specific RNA-binding protein shows that the
exons fall at the junction of the three domains (Alcid and
Jurica 2008). The location of the lariat-intron remains to be
determined to complete the map of the substrate pre-
mRNA within C complex.

RESULTS AND DISCUSSION

We have generated an EM label suitable for use with such
massive complexes: a novel, cloneable tag from the Dro-
sophila melanogaster actin nucleating protein Spire (Quinlan
et al. 2005). Nucleating assembly of an actin filament
(F-actin) makes the label directly visible in an image. Spire
initiates barbed-end filament growth by binding and scaffold-
ing actin monomers (G-actin) using its four tandem
Wiskott-Aldrich Syndrome protein (WASp) homology 2
(WH2) domains (SpireABCD) (Quinlan et al. 2005). The
two C-terminal WH2 repeats (SpireCD) plus intervening
loop, comprising 10 kDa, are sufficient to nucleate actin
polymerization.

As proof of concept for this label, we created a fusion of the
DNA repair enzyme Thermatoga maritima RuvB, a 37
dkDa protein that assembles into homohexamers (Putnam
et al. 2001), with SpireCD joined to its N-terminus through
an eight amino acid linker. In a standard actin polymeri-

domains (SpireABCD) (Quinlan et al. 2005). The
two C-terminal WH2 repeats (SpireCD) plus intervening
loop, comprising 10 kDa, are sufficient to nucleate actin
polymerization.

As proof of concept for this label, we created a fusion of the
dNA repair enzyme Thermatoga maritima RuvB, a 37
dkDa protein that assembles into homohexamers (Putnam
et al. 2001), with SpireCD joined to its N-terminus through
an eight amino acid linker. In a standard actin polymeri-
ization assay that monitors the change in fluorescence as
pyrene-labeled actin monomers (G-actin) assemble into
F-actin (Moseley and Goode 2005), SpireCD-RuvB weakly
nucleated F-actin growth (data not shown). In images of
labeled SpireCD-RuvB, single actin filaments are associated
with RuvB hexamers (Fig. 1) and there are few free actin
filaments that are likely due to monomeric RuvB. The
width of the filament with respect to the hexamer is
equivalent to about one or two 37 kDa RuvB subunits,
suggesting that the F-actin label could localize subunits of
about 50 kDa to a position of about 5 nm within a larger
complex (Fig. 1).

FIGURE 1. SpireCD-RuvB with F-actin labels. In the background,
SpireCD-RuvB hexamers without actin filaments (white arrow head),
as well as monomeric actin (asterisk), are visible. The scale bar
represents a length of 100 nm. Images were collected on a 1k × 1k
AMT detector on an FEI Morgani microscope operating at 80 keV
and 36,000 times magnification. (a) SpireCD-RuvB hexamers (white
arrowheads); (b–d) SpireCD-RuvB with single actin filaments (black
arrowheads).

Next, we purified C complex spliceosomes as described
(Jurica et al. 2002), but with one change. We used a modi-
fied RNA-affinity tag with five tandem moieties: SpireCD,
an eight amino acid linker, maltose binding protein (MBP),
MS2 coat protein, and a six-histidine peptide. SpireCD,
the linker, and the six-histidine tag add 11 kDa in mass to the
traditional MS2:MBP RNA affinity tag used in C complex
purification. The MS2 coat protein moiety binds to one of
two tandem MS2 stem loops encoded upstream of the
branchpoint within the intron of the pre-mRNA splicing
substrate. To form the labeled complex, we mixed purified
C complex with G-actin, quenched filament growth with
cytochalasin B, and stabilized the filament with phalloidin.
To visualize the resulting complexes in the EM, we pre-
pared negatively stained continuous carbon grids using
fresh 1% uranyl formate.

C complex spliceosomes associated with individual actin
filaments could be readily observed in EM images (Fig. 2).
This particle binds to the carbon substrate such that the
majority of the particles adopt a single orientation (Fig. 2a;
Jurica et al. 2002), allowing us to identify this representa-
tive view in our raw images (Fig. 2b–f). The filament
appeared to be attached to the spliceosome at the small
domain, which has previously been proposed to contain the
intron-interacting U2 snRNP component SF3b (Jurica et al.
2004).

To show that the filament junction with the particle is
localized to the small domain, we selected 1576 negatively
stained particles from 885 images collected at 59,000 times
magnitude on an FEI Technai F30 operating at 200 kV.
From these raw data, we could easily identify particles with
the preferred orientation (Fig. 2b–f), which we aligned with
the expected class average (Fig. 2a). The resulting average of
the 100 particles that aligned with the highest cross
correlation coefficient (Fig. 3a), and its difference map
(Fig. 3b,c) with the unlabeled complex (Fig. 2a), support our observation from the raw data that the label tags the small domain of C complex (Fig. 3d). Although the filament is not visible in the average, the additional mass that is localized at the small domain is clearly seen in the single 4-sigma peak in the difference map of the labeled and unlabeled averages (Fig. 3d). This 4-sigma peak is significantly stronger and broader than the other positive and negative peaks, the strongest of which are 3-sigma. Its broad shape can be attributed either to the three sequential MS2 loops in the substrate RNA, which are separated by 13 nucleotides (nt) that can span a maximum distance of 12 nm, or to the filament itself. This analysis shows that our label can be located both in raw and averaged images.

Understanding where the pre-mRNA substrate is within the massive C complex spliceosome has been challenging owing to a lack of techniques that are appropriate for labeling such difficult samples. By comparing our result with those from a recently developed RNA label that has been used to tag the two exons (Alcid and Jurica 2008), we show that the intron lariat (120 nt in length not including the stem loops) sits about 3 nm from the free 5’ and intron-joined 3’ exons in the small domain near its junction with the arm domain (Fig. 3). The three main elements of the pre-mRNA substrate (the two exons and the intron-lariat) appear to fall at the periphery of the complex (Figs. 2a, 3). The RNA strand that joins the 3’ exon to the lariat could run either around the surface of the molecule or through the cavity that is found between the small and large domains (Fig. 3e).

In both RuvB and C complex spliceosomes, the low background, extreme specificity, and visually identifiable mass of the F-actin label show that it fulfills our requirements for an easy-to-use EM label. Additionally, the length of the actin filament “pointer” is easy to adjust by adding cytochalasin B earlier or later to quench growth. Filament growth rate is directly proportional to the concentration of available actin monomers, so that at 0.5 μM monomeric actin in the presence of Mg2+, monomers are added to the barbed end at a rate of about 6 per second (about 20 nm of polymer length) (Pollard 1986). For visualizing a filament on a small protein or protein complex, short filaments might be desirable and therefore one might use a low actin concentration (0.5–1 μM) and short polymerization time (10–30 sec). For a larger complex, one might use a higher actin concentration (1–3 μM) and longer polymerization times (30–120 sec).

Additional benefits include that the tag is small during expression and purification, and thus less likely to interfere with these steps. The small size of the tag means it is less disruptive to the complex of interest if it falls on the surface; however, if it were to be buried, the G-actin could not interact with Spire and, therefore, there would be no actin nucleation. Successful actin nucleation can be detected, for example, by a simple solution scattering experiment (Moseley and Goode 2005). It should be noted that SpireCD
is not as efficient an actin-assembly promoting factor (Quinlan et al. 2005) (data not shown) as either Arp2/3 complex or formins (Pollard 2007). This could be an advantage when expressing recombinant protein-Spire fusions in a eukaryotic expression system where efficient actin nucleation might interfere with cellular functions. Although the size and flexible tethering of the filament can interfere with alignment (data not shown), the filament can be accurately identified in the raw images so averaging is not needed to interpret the labeled particles.

In summary, we have tested the F-actin label on two different samples suitable for negative-stain single particle EM. First, we labeled the N-terminus of RuvB, showing that single, untangled actin filaments could be readily assembled from SpireCD-RuvB molecules and localizing a mass of \(\sim 50 \text{kDa} \) to within \(\sim 5 \text{nm} \). Second, we labeled the intron of the C complex spliceosome and localized the pre-mRNA intron to the small domain of C complex, not far from the junction of its three domains where the exons are believed to reside. This result shows that the three main elements of the substrate pre-mRNA in C complex (the 5' exon, the intron lariat, and the 3' exon) are at the periphery of the spliceosome, poised for the second step of catalysis and intron release.

The authors conclude that the labeling method provides valuable insights into the dynamic interactions within the spliceosome, highlighting the utility of such approaches in understanding the complex mechanisms underlying RNA splicing.

REFERENCES

Actin filament labels for localizing protein components in large complexes viewed by electron microscopy

M. Elizabeth Stroupe, Chen Xu, Bruce L. Goode, et al.

RNA published online December 17, 2008

License

Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.

To subscribe to RNA go to:
http://rnajournal.cshlp.org/subscriptions

Copyright © 2008 RNA Society