Orientation of the tRNA anticodon in the ribosomal P-site: Quantitative footprinting with U₃₃-modified, anticodon stem and loop domains

S. SALMAN ASHRAF, RICHARD GUENTHER, and PAUL F. AGRIS
Department of Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622, USA

ABSTRACT

Binding of transfer RNA (tRNA) to the ribosome involves crucial tRNA–ribosomal RNA (rRNA) interactions. To better understand these interactions, U₃₃-substituted yeast tRNAᵦₚhe anticodon stem and loop domains (ASLs) were used as probes of anticodon orientation on the ribosome. Orientation of the anticodon in the ribosomal P-site was assessed with a quantitative chemical footprinting method in which protection constants (Kₚ) quantify protection afforded to individual 16S rRNA P-site nucleosides by tRNA or synthetic ASLs. Chemical footprints of native yeast tRNAᵦₚhe, ASL-U₃₃, as well as ASLs containing 3-methyluridine, cytidine, or deoxyuridine at position 33 (ASL-m₃U₃₃, ASL-C₃₃, and ASL-dU₃₃, respectively) were compared. Yeast tRNAᵦₚhe and the ASL-U₃₃ protected individual 16S rRNA P-site nucleosides differentially. Ribosomal binding of yeast tRNAᵦₚhe enhanced protection of C1400, but the ASL-U₃₃ and U₃₃-substituted ASLs did not. Two residues, G926 and G1338 with Kₚₛ = 50–60 nM, were afforded significantly greater protection by both yeast tRNAᵦₚhe and the ASL-U₃₃ than other residues, such as A532, A794, C795, and A1339 (Kₚₛ between 100–200 nM). In contrast, protections of G926 and G1338 were greatly and differentially reduced in quantitative footprints of U₃₃-substituted ASLs as compared with that of the ASL-U₃₃. ASL-m₃U₃₃ and ASL-C₃₃ protected G530, A532, A794, C795, and A1339 as well as the ASL-U₃₃. However, protection of G926 and G1338 (Kₚₛ between 70 and 340 nM) was significantly reduced in comparison to that of the ASL-U₃₃ (43 and 61 nM, respectively). Though protections of all P-site nucleosides by ASL-dU₃₃ were reduced as compared to that of the ASL-U₃₃, a proportionally greater reduction of G926 and G1338 protections was observed (Kₚₛ = 242 and 347 nM, respectively). Thus, G926 and G1338 are important to efficient P-site binding of tRNA. More importantly, when tRNA is bound in the ribosomal P-site, G926 and G1338 of 16S rRNA and the invariant U₃₃ of tRNA are positioned close to each other.

Keywords: anticodon stem/loops; modified nucleosides; quantitative footprinting; ribosome

INTRODUCTION

Transfer and ribosomal RNAs play critical roles in both the decoding (Moazed & Noller, 1986, 1990) and peptidyl-transferase (Barta et al., 1984; Noller et al., 1992; Noller, 1993; Green et al., 1997) activities of the ribosome. Binding of tRNA to the mRNA-programmed ribosome involves tRNA–rRNA, as well as tRNA–mRNA contacts. Some tRNA–rRNA contacts have been identified with chemical footprinting techniques (Moazed & Noller, 1990; von Ahsen & Noller, 1995). Numerous cross-linking studies have provided insights into tRNA binding sites on the ribosome (Prince et al., 1982; Doring et al., 1994; Osswald et al., 1995). However, two of the more difficult challenges have been the identification of specific nucleoside interactions of tRNA’s anticodon stem and loop with 16S rRNA and the orientation of the tRNA anticodon relative to the 16S nucleosides at the decoding site.

In exploring the specific structural requirements of tRNA for efficient ribosomal binding, we and others have shown that efficient binding of tRNA to the ribosome requires a proper tRNA anticodon U-turn conformation (von Ahsen et al., 1997; Ashraf et al., 1999). Nucleoside substitutions of the invariant U₃₃, whether in the full-length tRNA or the tRNA anticodon stem and loop domain (ASL), adversely affected ribosomal binding. Here, we report the use of these variously substituted U₃₃ ASLs as probes of tRNA’s anticodon interaction with and relative orientation to individual 16S rRNA P-site nucleosides. To determine and compare subtle as well
as dramatic differences in the way various ASLs interacted with the ribosome, a quantitative footprinting assay was developed. This assay was adapted from the chemical probing of rRNA first reported by Moazed & Noller (1986, 1990). We quantified the subtle differences in chemical protection of individual 16S rRNA P-site nucleosides by native yeast tRNAPhe and a completely unmodified tRNAPhe ASL. Then, orientation of the tRNA anticodon relative to individual 16S rRNA P-site nucleosides was determined using the U\textsubscript{33}-substituted ASLs and this quantitative footprinting technique.

RESULTS

Experimental design

U\textsubscript{33}-substituted anticodon stem and loop domains (ASLs), chemically synthesized with the nucleoside sequence of the unmodified yeast tRNAPhe differed only at position 33, the position of the invariant U\textsubscript{33} that is 5'-adjacent to the anticodon (Fig. 1). U\textsubscript{33} substitutions were shown to affect structure of the ASL loop and, therefore, anticodon conformation and dynamics, but not the stem thermal stability (Ashraf et al., 1999). Changes in anticodon loop stability and conformation resulted in U\textsubscript{33}-substituted ASLs binding the P-site of programmed ribosomes to varying degrees (Fig. 1). We used ASLs with quantifiable binding to the ribosome, ASL-U\textsubscript{33} and the U\textsubscript{33}-substituted ASLs with m3U\textsubscript{33}, C\textsubscript{33}, and dU\textsubscript{33}, as probes of the anticodon’s orientation at the ribosomal P-site. In doing so, we assessed the chemical footprinting of each of the four ASLs (as well as yeast tRNAPhe) on the known 16S rRNA P-site nucleosides. However, to adequately differentiate the chemical protection of a particular 16S rRNA nucleoside by one ASL and compare it to another, each protection was quantified.

Quantitative footprinting has been used extensively in studying DNA–protein interactions (Brenowitz et al., 1986; Petri & Brenowitz, 1997). More recently it has been applied to the folding of the group I Tetrahymena ribozyme (Banerjee & Turner, 1995; Sclavi et al., 1998), as well as the study of RNA–antibiotic interactions (Wallis et al., 1995). However, an assay to examine quantitatively the chemical protections of ribosomal nucleotides upon tRNA or ASL binding had not been reported. In developing this methodology, criteria already established for valid quantitative footprinting methods (Brenowitz et al., 1986; Petri & Brenowitz, 1997) had to be addressed. Besides meeting these criteria, the use of ASLs rather than native tRNAs required establishing additional conditions. Many heptadecamer ASLs with five-membered base-paired stems and seven-membered loops begin to denature at temperatures lower than 37 °C (Ashraf et al., 1999), the temperature conventionally used for ribosomal footprinting (Moazed & Noller, 1990). Therefore, we determined the temperature as well as the time dependence of kethoxal and dimethyl sulfate (DMS) reactivity of 16S rRNA P-site nucleosides. Before applying the methodology to address the issue of anticodon orientation on the ribosome, we validated our approach by quantifying the subtle differences in footprints between native yeast tRNAPhe and the ASL-U\textsubscript{33}.

Temperature dependence of chemical protection of P-site nucleotides by native yeast tRNAPhe and ASL-U\textsubscript{33}

The protection from chemical probes afforded to 16S rRNA P-site nucleosides (in particular G926, G966, and G693) and G530 by the ASL-U\textsubscript{33} and native yeast tRNAPhe was analyzed as a function of temperature (Fig. 2). These experiments determined not only a temperature at which most P-site nucleosides could be probed with ASLs, but also conditions that would be equally suitable for comparisons to native yeast tRNAPhe. The P-site residues G926 and G530 were protected from chemical modification by tRNAPhe at all temperatures tested (4, 15, 25, and 37 °C). However, G966 and G693, though protected from kethoxal reactivity at the higher temperature (37 °C), were not protected by tRNAPhe at the lower temperatures (Fig. 2A). The inability of yeast tRNAPhe to protect G966 and G693 from reacting with kethoxal at lower temperatures probably reflects the dynamic nature of ribosomes, such that at

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Primary sequence and secondary structure of the ASLs, and their relative binding affinities to the poly(U)-programmed 30S ribosomal subunit. ASL-U\textsubscript{33} had the same sequence as the unmodified anticodon stem and loop of yeast tRNAPhe. Other ASLs were substituted at position-33 as follows: ASL-m3U\textsubscript{33}, substituted with 3-methyluridine, ASL-C\textsubscript{33} with cytidine, ASL-dU\textsubscript{33} with deoxyuridine, ASL-Um\textsubscript{33} with 2'-O-methyluridine, ASL-m6U\textsubscript{33} with 6-methyluridine, and ASL-D\textsubscript{33} with dihydrouridine. Dissociation constants (K\textsubscript{d}) for tRNAPhe and each ASL were determined using filter binding as described in Materials and Methods.}
\end{figure}
low temperatures, these particular rRNA residues are less dynamic and though accessible for chemical reactivity, they are not available for interaction with tRNA.

As with tRNA^Phe, protection of P-site nucleosides with the ASL-U33 was also temperature sensitive (Fig. 2B). G926 (data not shown) and G530 were protected at lower temperatures (4, 15, and 25 °C), but not at 37 °C. The inherent instability of the ASL-U33 at 37 °C (Ashraf et al., 1999) probably accounts for the lack of protection of G530 (and G926) at this temperature. However, the ASL did not protect G693 at 37 or at 4 °C, and only weakly at 25 and 15 °C. Probably the inability of the ASL to protect G693 at these temperatures was because of the lack of ribosomal dynamics at lower temperatures and the melting of the ASL loop at higher temperatures. For this reason, only six (A532, A794, C795, G926, G1338, and A1339) of the nine previously identified tRNA P-site footprints (A532, G693, A794, C795, G926, G966, G1338, A1339, and G1401) could be examined at the temperature used for the quantitative footprinting (20 °C). Under conditions where 16S rRNA P-site nucleosides were protected from chemical probes by yeast tRNA^Phe, we consistently observed protection of G530, by both yeast tRNA^Phe and the ASL-U33 (Fig. 2A and Fig. 2B). Therefore, G530 [which was initially assigned to the ribosomal A-site (Moazed & Noller, 1990)], as well as C1400, which had an enhanced chemical reactivity upon yeast tRNA^Phe binding, were included in this study.

Codon dependence of the chemical footprinting and time dependence of the chemical probing were investigated with the ASL-U33. Codon dependence of the footprinting was confirmed by using a heptadecamer ASL in which the poly(U) responsive anticodon of tRNA^Phe, G34A35A36, was changed to G34C35A36. As expected, ASL-G34C35A36 did not protect 16S rRNA P-site residues from chemical reactivity (data not shown). A time-dependent evaluation was conducted for both kethoxal and DMS reactions. At the concentrations of kethoxal and DMS chosen for the experiments, the degree of protection of the 16S rRNA nucleosides by the ASL-U33 and by tRNA had reached equilibrium within 20 min at 20 °C (data not shown).

Quantification of yeast tRNA^Phe–rRNA interactions at specific 16S rRNA residues

To accurately quantify tRNA–rRNA interactions at individual 16S rRNA P-site nucleosides, poly(U)-programmed 30S ribosomal subunits were titrated with increasing amounts of tRNA^Phe or the ASL-U33. The degree of protection from chemical probes afforded by tRNA^Phe or the ASL at each of the eight P-site nucleosides was quantified with the aid of a Phosphorimager. For example, titration of poly(U)-programmed 30S ribosomal subunits with increasing amounts of ASL resulted in an increased protection of G1338 from kethoxal reactivity (Fig. 3A). The intensity of the G1338 band in each lane was quantified and was used as a direct measure of “binding” (i.e., the degree to which the 16S rRNA nucleoside was protected from the chemical probe). The protection of G1338 from kethoxal reactivity by the ASL-U33 followed a one-site binding isotherm, and the apparent protection constant (K_p) was determined by both nonlinear regression (Fig. 3B) and Scatchard analysis (Fig. 3C) to be 69 nM and 65 nM, respectively, for this particular experiment, and 61 ± 25 nM after multiple analyses.

Differential protection of individual P-site nucleosides by yeast tRNA^Phe and the ASL-U33

The quantitative footprinting of 16S rRNA nucleosides by the ASL-U33 was compared to that of native yeast tRNA^Phe. The 16S rRNA nucleosides that were protected from chemical probes by tRNA^Phe were also protected by the ASL (Fig. 4A and Fig. 4B). Nonlinear regression was used to derive a quantitative measure for these protections, K_p (Fig. 4 and Table 1). Yeast tRNA^Phe differentially protected the various 16S rRNA P-site nucleosides; for example, G530, G926, and G1338 were protected to a higher degree than A532, A794, C795, A1339, and C1400. The ASL-U33 protected the same 16S rRNA residues to approximately the same degrees as yeast tRNA^Phe, except for G530. The protection of G530 from kethoxal by the ASL was...
significantly reduced ($K_p = 96 \pm 60$ nM) as compared to that afforded by tRNAPhe ($K_p = 25 \pm 18$ nM). C1400 reactivity to DMS was enhanced upon binding of yeast tRNAPhe, as previously reported (Moazed & Noller, 1990). Yet, strikingly the binding of the ASL-U33 to 30S ribosomes failed to enhance the reactivity of C1400 (Fig. 4B). Furthermore, C1400 failed to show any enhancement even upon addition of five molar excess of the ASL-U33.

Differential protection of individual P-site nucleotides by various U33-substituted ASLs

The quantitative footprints of ASL-m3U33, ASL-C33, and ASL-dU33, all with reduced but significant ribosomal binding (Fig. 1), were assessed and compared to each other as well as that of ASL-U33. The four ASLs protected the 16S rRNA P-site nucleosides, A532, A794, G926, G1338, and A1339, and G530 differentially (Fig. 5). Reactivity of C1400 was not enhanced upon binding of any of the ASLs. The degrees of protection conferred by the ASLs at the various P-site nucleosides were not equal. Some ASLs, such as ASL-dU33, did not protect the P-site nucleosides as completely as ASL-U33 or tRNAPhe. Indeed, quantification of the footprinting demonstrated that significant differences existed in the degrees to which the three U33-substituted ASLs differentially protected the P-site nucleosides (Table 2). ASL-m3U33, ASL-C33, and ASL-U33 protected six of the eight 16S rRNA P-site nucleosides similarly. The two exceptions were G926 and G1338. Protection of G926 and G1338 by ASL-m3U33 was reduced to one-half and one-fourth ($K_p = 70 \pm 5$ nM; $K_p = 270 \pm 68$ nM) of that afforded by

![Figure 3](https://via.placeholder.com/150.png)

FIGURE 3. Quantification of chemical protection (K_p) afforded by ASL-U33 to G1338. Protection of the 16S rRNA nucleotide (G1338) was assessed quantitatively by titrating poly(U)-programmed 30S ribosomal subunits with increasing concentrations of ASL-U33. A: Dideoxy-sequencing gel for determining the protection of G1338. A, C, G, and U represent dideoxy sequencing lanes of 16S rRNA. K is the control lane showing the natural reverse transcription stops in 16S rRNA. Lanes 1–10 contain 10 pmol of 30S ribosomal subunits plus 10 μg poly(U) and increasing amounts of ASLPhe (0, 3, 6, 9, 12, 15, 20, 25, 30, and 50 pmol). The K_p for the protection of G1338 from kethoxal reactivity by the ASL-U33 was determined from a nonlinear regression (B) and a Scatchard analysis (C). An apparent K_p of 30 nM and a stoichiometry of ASLPhe/30S ribosomal subunit 0.81 were obtained using both analyses.
ASL-U₃₃ and ASL-C₃₃, respectively. Similarly, protections of G926 and G1338 by ASL-C₃₃ were reduced to one-half and one-sixth ($K_p = 82 ± 7$ nM; $K_p = 340 ± 76$ nM) that of the ASL-U₃₃, respectively. ASL-dU₃₃ had a similarly selective effect on the individual K_ps. However, ASL-dU₃₃ protected all of the P-site nucleosides more poorly than the ASL-U₃₃ (Table 2, shaded area).

DISCUSSION

Site-specific substitution of U₃₃ resulted in the production of a set of ASLs with varying degrees of ribosomal binding (Ashraf et al., 1999; Fig. 1). We have assessed the interaction of the various U₃₃-substituted ASLs and yeast tRNAₚhe with individual 16S rRNA P-site nucleosides. With the ASLs, we were able to footprint the local space occupied by U₃₃ and the anticodon in the ribosomal P-site. However, to differentiate objectively the footprint of one particular ASL from another, we developed a quantitative footprinting method based on the initial chemical probing approach of Moazed and Noller (1990).

Development of this assay for tRNA's binding to the ribosome included meeting or exceeding the already established criteria for quantitative footprinting (Brenewitz et al., 1986; Petri & Brenowitz, 1997): (1) An equilibrium rather than a kinetic process is being studied; (2) The experimental procedures (minor base alkylation and sugar substitution) do not dramatically perturb the interaction being studied; and (3) The results are consistent with an independent method (von Ahsen et al., 1997; Ashraf et al., 1999). In addition, the quantitative protection data for the individual 16S rRNA P-site nucleosides were found to correspond to a one-site binding isotherm. Furthermore, in determining the conditions for this method, we found that the 16S rRNA tertiary structure was very sensitive to temperature and that the protection of certain P-site nucleosides (e.g., G530) from chemical probes by ASL cannot be observed above 25°C (Fig. 2B). This finding and the thermal instability of the ASL compared to that of tRNA required that assays be performed at 20°C.

Examination of the degree of protection (via protection constants, K_p) afforded the various 16S rRNA P-site nucleosides by yeast tRNAₚhe and the ASL-U₃₃ demonstrated that both the tRNA and the ASL interacted with individual P-site nucleosides with different K_ps (Table 1). Quantitative footprinting results for yeast tRNAₚhe and ASL-U₃₃ were comparable to the previously published (Moazed & Noller, 1986), visually estimated reactivities of the various 16S rRNA P-site nucleosides (Table 1). However, in addition to protection of the recognized P-site nucleosides, we always observed protection of G530 by both yeast tRNAₚhe

TABLE 1. Protection constantsa for the interaction of yeast tRNAₚhe or ASL with individual 30S P-site nucleotides.

<table>
<thead>
<tr>
<th>16S P-site nucleotide</th>
<th>Relative reactivityb</th>
<th>yeast tRNAₚhe (K_p)</th>
<th>ASL-U₃₃ (K_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G530</td>
<td>+++</td>
<td>25 (+ 18)</td>
<td>96 (+ 60)</td>
</tr>
<tr>
<td>A532</td>
<td>+</td>
<td>200 (+ 29)</td>
<td>195 (+ 17)</td>
</tr>
<tr>
<td>A794</td>
<td>+</td>
<td>123 (+ 52)</td>
<td>170 (+ 44)</td>
</tr>
<tr>
<td>C795</td>
<td>±</td>
<td>176 (+ 32)</td>
<td>103 (+ 48)</td>
</tr>
<tr>
<td>G926</td>
<td>+++</td>
<td>53 (+ 23)</td>
<td>43 (+ 10)</td>
</tr>
<tr>
<td>G1338</td>
<td>++</td>
<td>52 (+ 27)</td>
<td>61 (+ 25)</td>
</tr>
<tr>
<td>A1339</td>
<td>±</td>
<td>149 (+ 57)</td>
<td>199 (+ 71)</td>
</tr>
<tr>
<td>C1400c</td>
<td>±</td>
<td>479 (+ 18)</td>
<td>Not detected</td>
</tr>
</tbody>
</table>

aProtection constants are in nM for binding in 20 mM MgCl₂ at 20°C.

bVisually estimated reactivity (+ + +: hyperreactive; ±: marginally reactive) (Moazed & Noller, 1986).

cBinding of yeast tRNAₚhe to programmed-30S ribosomal subunit caused an enhancement of C1400 reactivity, deprotection. However, a protection constant of C1400 upon yeast tRNAₚhe binding to 30S ribosomal subunit was calculated for this enhanced reactivity to compare P-site nucleoside reactivities.
and ASL. G530 is considered to be a tRNA A-site footprint. Our observation with G530 is consistent with that reported by Moazed and Noller (1990) who found that P-site bound tRNA weakly protected G529 and G530. An alternative explanation of the qualitative and quantitative protections of G530 is that the binding of yeast tRNAPhe (or ASL) to the 30S ribosomal subunit results in a conformational change in 16S rRNA such that G530 is footprinted in both the A- and P-sites. We believe further research is warranted before G530 is conclusively assigned to either the A- or P-site, or to a dynamic of the ribosome.

Results from the quantitative footprinting defined two classes of 16S rRNA P-site nucleosides; G530, G926 and G1338 with lower K_p's, and A532, A794, C795, and A1339 with significantly higher K_p's. The lower K_p's for G530, G926, and G1338 as compared to A532, A794, C795, and A1339 may reflect that the two groups of nucleosides reside in spatially different environments or are differentially protected upon tRNA binding. Alternatively, the weakly protected sites may result from "conformational" footprints, for example, an altered conformation of 16S rRNA due to tRNA binding. The 16S rRNA residues that are protected by yeast tRNAPhe (or ASL) to a higher degree may be in close proximity to the anticodon. This hypothesis is supported by data from two laboratories. G926 was identified as one of the 16S rRNA residues that may possibly make intermolecular contacts between rRNA and tRNA (von Ahsen

TABLE 2. Protection constants a for the interaction of variously U33-modified ASLs with individual 30S P-site nucleotides.

<table>
<thead>
<tr>
<th>16S P-site nucleotide</th>
<th>ASL-U33</th>
<th>ASL-mU33</th>
<th>ASL-C33</th>
<th>ASL-dU33</th>
</tr>
</thead>
<tbody>
<tr>
<td>G530</td>
<td>96 (± 60)</td>
<td>105 (± 34)</td>
<td>107 (± 43)</td>
<td>203 (± 24)</td>
</tr>
<tr>
<td>A532</td>
<td>195 (± 17)</td>
<td>173 (± 66)</td>
<td>106 (± 17)</td>
<td>216 (± 63)</td>
</tr>
<tr>
<td>A794</td>
<td>170 (± 44)</td>
<td>135 (± 22)</td>
<td>163 (± 68)</td>
<td>378 (± 38)</td>
</tr>
<tr>
<td>C795</td>
<td>103 (± 48)</td>
<td>129 (± 26)</td>
<td>134 (± 25)</td>
<td>349 (± 101)</td>
</tr>
<tr>
<td>G926</td>
<td>43 (± 10)</td>
<td>70 (± 5)</td>
<td>82 (± 7)</td>
<td>242 (± 86)</td>
</tr>
<tr>
<td>G1338</td>
<td>61 (± 25)</td>
<td>270 (± 68)</td>
<td>340 (± 76)</td>
<td>377 (± 70)</td>
</tr>
<tr>
<td>A1339</td>
<td>199 (± 71)</td>
<td>285 (± 111)</td>
<td>226 (± 43)</td>
<td>416 (± 125)</td>
</tr>
<tr>
<td>C1400</td>
<td>Not detected*</td>
<td>Not detected*</td>
<td>Not detected*</td>
<td>Not detected*</td>
</tr>
</tbody>
</table>

*Protection constants are in nM for binding in 20 mM MgCl₂ at 20°C.

**Enhancement of C1400 accessibility/reactivity to DMS was only observed upon yeast tRNAPhe binding, and not with any of the ASLs tested.
& Noller, 1995). Also, nucleoside 32 just 5′ adjacent to the invariant U33 of Escherichia coli tRNA^{Phe} has been cross-linked with a photoactive diazirine derivative to G1338 in 16S rRNA (Doring et al., 1994) indicating a close spatial relationship (within 10 Å) between the position 32 of the anticodon loop and G1338.

In addition to showing differential protection of the individual P-site nucleosides in 16S rRNA, quantitative footprinting also highlighted subtle differences between the ribosomal binding of native tRNA^{Phe} and the ASL-U33. The ASL-U33 protected the 16S P-site nucleosides very similarly to yeast tRNA^{Phe}, except for two notable differences, G530 and C1400. Residue G530 was protected to a higher degree by tRNA^{Phe} than by ASL-U33 (tRNA^{Phe}: K_p = 25 ± 18 nM; ASL-U33: K_p = 96 ± 60 nM), whereas C1400, whose chemical reactivity was enhanced upon yeast tRNA^{Phe} binding, did not exhibit any enhancement with the binding of ASL-U33. A fully modified yeast tRNA^{Phe} ASL (with all the nucleoside modifications) binds to 30S ribosomal subunits with the same binding affinity (K_d) as yeast tRNA^{Phe} (Rose et al., 1983) and produces the same footprints (including the C1400 enhancement) on 16S rRNA as yeast tRNA^{Phe} (Moazed & Noller, 1986). The anticodon stem and loop is the only region of the tRNA molecule that is protected from hydroxyl radical probing by the 30S ribosomal subunit (Huttenhofer & Noller, 1992). Therefore, we believe the differences in the K_p's observed for the interaction of the 16S rRNA nucleosides with ASL-U33 versus yeast tRNA^{Phe} (Table 1) are due to the lack of modified nucleosides in the ASL, and not due to its smaller size or sequence length. The enhancement of C1400 reactivity with the binding of yeast tRNA^{Phe} was thought to result from the 2′-O-methyl modification of G34 (Gm34) in that tRNA's anticodon, as this enhancement was not observed upon binding of E. coli tRNA^{Phe} that has an unmethylated G at position 34 (Moazed & Noller, 1986). In fact, we have recently observed that Gm34 was the only modification in the yeast tRNA^{Phe} ASL able to produce the C1400 enhancement. This effect was observed only with Gm34-containing ASLs (Ashraf et al., in prep.) and is consistent with the fact that C1400 has been directly cross-linked to the anticodon position 34 of tRNA (Prince et al., 1982). Thus, C1400 lies very close to the tRNA anticodon in the P-site, and probably adjacent to position 34.

Using quantitative footprinting, we have probed 16S rRNA nucleosides with U33-substituted ASLs to gain a better understanding of the orientation of the tRNA anticodon in the ribosomal P-site. This approach depended on the conformational perturbation of U33 and the U-turn rather than the use of bulky cross-linking reagents with the potential to structurally perturb 16S rRNA nucleosides. ASL-m^3Ja-U33 protected the P-site nucleosides with K_p's similar to ASL-U33 except for G926 and G1338. K_p's for G926 and G1338 were two- to fourfold higher than that observed with ASL-U33, respectively (Table 2). Likewise, the only observed differences in the K_p's between ASL-C33 and ASL-U33 were the significantly higher K_p's for G926 and G1338. Though protections of all P-site nucleosides by ASL-duU33 were reduced as compared to that of the ASL-U33, a proportionally greater reduction of G926 and G1338 protections was observed.

The observation that ASL-m^3U33 and ASL-C33 protected 16S rRNA nucleosides to a similar degree, as well as the fact that the K_p's obtained with ASL-C33 and ASL-duU33 were very different (Table 2), were surprising, as they seemed to contradict data from filter-binding experiments (Fig. 1). In the filter-binding assay, ASL-m^3U33 bound to programmed 30S ribosomes (K_d = 220 ± 20 nM) almost as well as ASL-U33 (K_d = 140 ± 50 nM), whereas ASL-C33 and ASL-duU33 had dramatically lower affinities (K_d = 2,190 ± 30 nM and 2,930 ± 140, respectively) (Fig. 1; Ashraf et al., 1999). Quantification of tRNA's or ASL's protection of individual 16S rRNA nucleosides from chemical probes (K_p's) were surpris-ingly similar, was directly cross-linked to the anti-
the decoding center of 16S rRNA already has been postulated on the basis of cross-linking data, for example, tRNA derivatized with diazirine at position 32 cross-linked to G1338 (Doring et al., 1994). In addition, G926 cross-linked to the +2 position of the mRNA start codon (diazirine modified U of AUG) only in the presence of tRNA\(^\text{met}\) (Sergiev et al., 1997). Hence, our approach of using locally perturbed ASLs as probes for tRNA binding sites of 16S rRNA provided independent confirmation of tRNA’s orientation at the decoding site.

The study presented here outlines a powerful approach to study biomolecular interactions involving nucleic acids. Site-selective incorporation of specifically altered nucleosides to cause local perturbations in nucleic acid structure followed by quantitative footprinting can potentially provide insight into nucleic acid–protein as well as nucleic acid–nucleic acid interactions.

MATERIALS AND METHODS

Materials

Yeast tRNA\(^\text{Phe}\), nucleosides, deoxynucleosides, and AMV-RT were purchased from Boehringer-Mannheim. Synthetic RNA heptadecamers representing the unmodified anticodon stem and loop of yeast tRNA\(^\text{Phe}\) (ASL-U\(^\text{30}\)) and the various U\(^\text{30}\)-substituted ASLs containing C, dU, and m\(^3\)U were synthesized by solid phase chemistry by the North Carolina State University Nucleic Acids Facility and were purified by ion-exchange and reverse-phase chromatography (Agris et al., 1995). Primers complementary to E. coli 16S rRNA sequences were used for reverse transcription. The complements to 1453–1469 was used to probe G1338, A1339, and C1400; the complement to 861–878 was used to probe A794 and C795; the complement to 950–965 was used to probe G926; the complement to 560–575 was used to probe G530 and A532; the complement to 1016–1032 was used to probe G966 and G926; and the complement to 1016–1032 was used to probe G530 and G693. Poly(U) was purchased from Sigma. Dimethyl sulfate was purchased from Aldrich and kethoxal was from Research Organics. ATP-[\(\gamma\)-\(^{32}\)P] (3,000 Ci/mmol) was purchased from ICN.

Preparation of 30S ribosomal subunits

Small ribosomal subunits (30S) were prepared from E. coli according to Ericson et al. (1995). Before conducting the binding of yeast tRNA\(^\text{Phe}\) or the ASLs, 30S ribosomal subunits were activated by incubating in buffer (20 mM Tris, pH 7.5, 200 mM NH\(_4\)Cl, 20 mM MgCl\(_2\), 2 mM dithiothreitol [DTT]) at 37°C for 30 min (Ericson et al., 1995).

Filter binding of yeast tRNA\(^\text{Phe}\) and ASLs to 30S ribosomal subunits

The filter binding assay for determining tRNA and ASL binding affinities to programmed 30S ribosomal subunits was accomplished as described previously (Ashraf et al., 1999). Briefly, binding of yeast tRNA\(^\text{Phe}\) and the various ASLs was measured by incubating 10 pmol 30S subunit and 10 \(\mu\)g poly(U) with increasing amounts of yeast tRNA\(^\text{Phe}\) or ASLs (up to 50 pmol) in 40 \(\mu\)L of 80 mM potassium-cacodylate buffer (pH 7.2, 20 mM MgCl\(_2\), 100 mM NH\(_4\)Cl, 3 mM \(\beta\)-mercaptoethanol) for 20 min at 37°C. A 20-min incubation on ice followed, as previously reported (Ashraf et al., 1999), before passing the incubation mixture through the filter. The codon specificity of the ribosomal binding assay was confirmed by using a synthetic heptadecamer corresponding to the anticodon and loop of yeast tRNA\(^\text{Phe}\), except that the anticodon was changed from 5'–GAA-3' to 5'–GCA-3'.

Chemical modification and primer extension

Chemical probing was accomplished as described by Moazed and Noller (1986). However, chemical modifications with DMS (1 \(\mu\)L of threefold diluted in 100% ethanol) and kethoxal (2 \(\mu\)L of 20-fold diluted in 20% ethanol) were conducted at 20°C for 30 min in 40 \(\mu\)L of buffer (80 mM sodium cacodylate, pH 7.2, 100 mM NH\(_4\)Cl, 20 mM MgCl\(_2\), 3 mM \(\beta\)-mercaptoethanol). In a temperature-dependent study of protection, the amount of kethoxal and the incubation times were varied because of the reduced reactivity of kethoxal at low temperatures. The concentration of kethoxal and incubation time ranged from 1 \(\mu\)L of 20-fold diluted kethoxal for 25 min at 37°C to 2 \(\mu\)L of 20-fold kethoxal for 4 h at 4°C. Primer extension of chemically modified rRNA was performed by annealing 1 pmol of \(^{32}\)P-labeled primer to 0.2 \(\mu\)g of rRNA in 2 \(\mu\)L of buffer (40 mM Pipes, 400 mM NaCl, 1 mM EDTA, 80% formamide) for 10 min at 45°C, followed by 10 min incubation on ice. Reverse transcription was initiated by adding 20 \(\mu\)L of the mixture containing 50 mM Tris-Cl, pH 8.2, 50 mM KCl, 6 mM MgCl\(_2\), 10 mM DTT, and 0.5 mM of each dATP, dCTP, dGTP, and dTTP plus 1 \(\mu\)L of AMV-RT. The reaction was allowed to proceed for 10 min at 42°C and was then stopped by adding 100 \(\mu\)L of 10 mM Tris, pH 8.0, and 1 mM EDTA to each tube. After phenol and chloroform extractions, reverse-transcribed cDNA was ethanol precipitated, dried, and resuspended in 10 \(\mu\)L of \(\frac{1}{2}\)-diluted formamide containing Bromophenol Blue and Xylene Cyanol dyes. The samples were heat denatured (2 min at 100°C) before being subjected to gel electrophoresis (3 \(\mu\)L each sample) on a 6–8% sequencing gel.

Phosphorimagener analysis and data manipulation

For quantifying of the 16S rRNA protections by yeast tRNA\(^\text{Phe}\) or the ASLs, the dried sequencing gels were exposed to a Phosphor-Screen that were scanned on a Molecular Dynamics PhosphorImager. Intensities of bands corresponding to specific residues were measured. Errors due to uneven sample loading were minimized by normalizing the intensities of protected nucleotides against a non-tRNA responsive (natural) reverse transcription stop (usually within 5 nt of the nucleotide to be quantitated). No significant differences were observed when the non-tRNA responsive RT stop used for normalization was located either before or after the 16S nucleotide of interest. The difference in intensity of a specific band (16S rRNA residue) in a lane without yeast tRNA\(^\text{Phe}\) or the ASL (usually the first lane) as compared to the lane with 5-molar excess yeast tRNA\(^\text{Phe}\) or the ASL (usually the last
Quantitative footprinting of 16S rRNA P-site by ASL

Inactive sites were not protected from chemical reactivity at excess tRNA Phe or ASL was a measure of inactive sites. Residual reactivity of the specific 16S rRNA bands at 5-molar bound tRNA Phe (or ASL) was subtracted from the amount of added tRNA Phe (or ASL) to determine the amount of free tRNA Phe (or ASL). Prism software (from Graphpad Inc.) was used for Scatchard and nonlinear regression analysis of the data.

ACKNOWLEDGMENTS

The authors acknowledge the technical assistance of Winnell Newman and Guihua Liu. We also thank Dr. Harry Noller for discussion about and suggestions for protection constants and Dr. Olke Uhlenbeck for bringing to our attention previously reported applications of quantitative footprinting to DNA–protein interactions, as well as for reviewing the manuscript. The authors also thank Dr. Paul Wollenzien for technical help with ribosomal preparations. This work was supported by grants to P.F.A. from the National Institutes of Health (GM23037) and National Science Foundation (MCB9631103).

Received May 5, 1999; returned for revision May 26, 1999; revised manuscript received June 7, 1999

REFERENCES

Podkowinski J, Gornicki P. 1989. Ribosomal proteins S7 and L1 are located close to the decoding site of E. coli ribosome: Affinity labeling studies with modified tRNAs carrying photoreactive probes attached adjacent to the 3’-end of the anticodon. Nucleic Acids Res 17:8767–8782.

\text{library}
\]

\text{to} 16 S RNA at the ribosomal P site: Identification of cross-linked residues. Proc Natl Acad Sci USA 79:5450–5454.

Orientation of the tRNA anticodon in the ribosomal P-site: quantitative footprinting with U33-modified, anticodon stem and loop domains.

S S Ashraf, R Guenther and P F Agris

RNA 1999 5: 1191-1199