CONTENTS

Note from the Editor

Commentary
Ubiquitous accumulation of 3’ mRNA decay fragments in Saccharomyces cerevisiae mRNAs with chromosomally integrated MS2 arrays
Jennifer F. Garcia and Roy Parker

Letter to the Editor
Use of the MS2 aptamer and coat protein for RNA localization in yeast: A response to “MS2 coat proteins bound to yeast mRNAs block 5’ to 3’ degradation and trap mRNA decay products: implications for the localization of mRNAs by MS2-MCP system”
Gal Haimovich, Dmitry Zabezhinsky, Brian Haas, Boris Slobodin, Pravinkumar Purushothaman, Lin Fan, Joshua Z. Levin, Chad Nusbaum, and Jeffrey E. Gerst

Bioinformatics
Guidelines for the functional annotation of microRNAs using the Gene Ontology
Rachael P. Huntley, Dmitry Sitnikov, Marija Orlic-Milacic, Rama Balakrishnan, Peter D’Eustachio, Marc E. Gillespie, Doug Howe, Anastasia Z. Kalea, Lars Maegdefessel, David Osumi-Sutherland, Victoria Petri, Jennifer R. Smith, Kimberly Van Auker, Valerie Wood, Anna Zampetaki, Manuel Mayr, and Ruth C. Lovering

High-throughput sequencing of partially edited trypanosome mRNAs reveals barriers to editing progression and evidence for alternative editing
Rachel M. Simpson, Andrew E. Bruno, Jonathan E. Bard, Michael J. Buck, and Laurie K. Read

Topology of RNA–protein nucleobase–amino acid π–π interactions and comparison to analogous DNA–protein π–π contacts
Katie A. Wilson, Devany J. Holland, and Stacey D. Wetmore

Reports
The deadenylase components Not2p, Not3p, and Not5p promote mRNA decapping
Najwa Alhusaini and Jeff Coller

Cover Illustration: Crystal structure of a ternary complex containing a T-box stem I RNA, its cognate tRNA(Gly) and YbxF protein (Protein Data Bank code: 4tzp; Zhang J, Ferré-D’Amaré AR. 2014. Dramatic improvement of crystals of large RNAs by cation replacement and dehydration. Structure 22: 1363–1372). Image details show RNA—ribbon-plate representation, chain-specific coloring; Oceanobacillus iheyensis glyQ T-box Stem I RNA—orange; engineered tRNA(Gly), green; B. subtilis YbxF protein—ribbon representation, violet. The image was generated with the Discovery Studio Visualizer. Cover image provided by the Jena Library of Biological Macromolecules—JenaLib (jenalib.leibniz-fli.de).

Published by Cold Spring Harbor Laboratory Press
Trans and cis factors affecting A-to-I RNA editing efficiency of a noncoding editing target in C. elegans
Michael C. Washburn and Heather A. Hundley

The \(i^6 \mathrm{A} \) modification is essential for proper decoding of UUX-Leucine codons during \(rpoS \) and \(iraP \) translation
Joseph I. Aubee, Morenike Olu, and Karl M. Thompson

Hoogsteen-position pyrimidines promote the stability and function of the MALAT1 RNA triple helix
Jessica A. Brown, Charles G. Kinzig, Suzanne J. DeGregorio, and Joan A. Steitz

Articles
Secondary structure confirmation and localization of Mg\(^{2+}\) ions in the mammalian CPEB3 ribozyme
Miriam Skilandat, Magdalena Rowinska-Zyrek, and Roland K.O. Sigel

Archaea box C/D enzymes methylate two distinct substrate rRNA sequences with different efficiency
Andrea Graziadei, Pawel Masiewicz, Audrone Lapinaite, and Teresa Carlomagno

Nudt3 is an mRNA decapping enzyme that modulates cell migration
Ewa Grudzien-Nogalska, Xinfu Jiao, Man-Gen Song, Ronald P. Hart, and Megerditch Kiledjian

Differential substrate recognition by isozymes of plant protein-only Ribonuclease P
Michael J. Howard, Agnes Karasik, Bradley P. Klemm, Christine Mei, Aranganathan Shanmuganathan, Carol A. Fierke, and Markos Koutmos

Prp8 retinitis pigmentosa mutants cause defects in the transition between the catalytic steps of splicing
Megan Mayerle and Christine Guthrie

Corrigendum
Corrigendum: Transitivity in \(\textit{Arabidopsis} \) can be primed, requires the redundant action of the antiviral Dicer-like 4 and Dicer-like 2, and is compromised by viral-encoded suppressor proteins
Guillaume Moissiard, Eneida Abreu Parizotto, Christophe Himber, and Olivier Voinnet

RNA: Instructions for contributors