REPORT

Metazoan stress granule assembly is mediated by P-eIF2α-dependent and -independent mechanisms

NATALIE G. FARNY,1 NANCY L. KEDERSHA,2 and PAMELA A. SILVER1

1Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
2Department of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, Massachusetts 02115, USA

ABSTRACT

Stress granules (SGs) are cytoplasmic bodies wherein translationally silenced mRNAs are recruited for triage in response to environmental stress. We report that Drosophila cells form SGs in response to arsenite and heat shock. Drosophila SGs, like mammalian SGs, are distinct from but adjacent to processing bodies (PBs, sites of mRNA silencing and decay), require polysome disassembly, and are in dynamic equilibrium with polysomes. We further examine the role of the two Drosophila eIF2α kinases, PEK and GCN2, in regulating SG formation in response to heat and arsenite stress. While arsenite-induced SGs are dependent upon eIF2α phosphorylation, primarily via PEK, heat-induced SGs are phospho-eIF2α-independent. In contrast, heat-induced SGs require eIF2α phosphorylation in mammalian cells, as non-phosphorylatable eIF2α Ser51Ala mutant murine embryonic fibroblasts do not form SGs even after severe heat shock. These results suggest that mammals evolved alternative mechanisms for dealing with thermal stress.

Keywords: stress granules; Drosophila; eIF2α; arsenite; heat shock

INTRODUCTION

The importance of RNA localization to subcellular bodies in many biological processes has become increasingly apparent. Various types of localized RNA bodies, known as RNA granules, are involved in functions as diverse as local translational control in neurons, regulation of maternal effect genes in developing embryos, and mRNA decay in many eukaryotic organisms (for reviews, see Anderson and Kedersha 2006; Kiebler and Bassell 2006; Eulalio et al. 2007; Anderson and Kedersha 2008). While many types of RNA granules are constitutively present, stress granules (SGs) are formed specifically in response to environmental stress. Stress stimuli such as heat shock or oxidative stress inhibit translation of most cellular mRNAs. When general translation initiation is thus inhibited, actively translating polysomes become disassembled. The mRNAs and associated initiation factors and RNA binding proteins from these disassembled polysomes are dynamically sequestered into SGs (Kedersha et al. 2000). Thus, SGs are thought to be sites of mRNA triage, a place where components of disassembled polysomes are sorted for silencing, reinitiation, or decay. Recent evidence suggests that the recruitment of specific proteins to SGs inhibits apoptosis (Arimoto et al. 2008) and affects cellular proliferation (Eisinger-Mathason et al. 2008), illustrating the critical role of SGs for cellular growth and survival.

Translational control at the level of initiation is an important mechanism of genetic regulation in eukaryotes, allowing cells to respond rapidly to environmental changes. Stress conditions activate stress-responsive kinases that inhibit translation initiation by phosphorylating the alpha-subunit of the eukaryotic initiation factor 2 (eIF2α). This phosphorylation event prevents GDP-GTP exchange on eIF2 by the guanine nucleotide exchange factor eIF2B, thereby inhibiting recycling of ternary complex containing the initiation methionine Met-tRNAi (Hershey and Merrick 2000). Generally, the phosphorylation of eIF2α results in polysome disassembly and subsequent SG assembly. However, SG formation can occur by P-eIF2α-independent mechanisms, when steps downstream from eIF2α are inhibited. For instance, the drugs pateamine A and hippuristanol initiate SG formation by inhibiting RNA helicase
we investigated SG occurrence in Drosophila. Given the importance of SGs in stress response pathways, Drosophila (2) SGs contain poly(A)+ RNA and components of the translation initiation machinery, but lack translating polyribosomes (Kedersha et al. 2002); and (3) SG formation requires polyosome disassembly (Kedersha et al. 2000). Until recently, bona fide SGs fitting all the above criteria were mainly reported in mammalian cells. However, several new studies have demonstrated the formation of SGs or SG-like bodies in Caenorhabditis elegans (Jud et al. 2008), Trypanosoma brucei (Kramer et al. 2008), Schizosaccharomyces pombe (Dundan-Sauthier et al. 2002), and Saccharomyces cerevisiae (Buchan et al. 2008; Grousl et al. 2009), although SGs have yet to be documented in some other common model organisms such as Xenopus laevis, Danio rerio, and Drosophila melanogaster. The apparent evolutionary conservation of SGs as a stress survival mechanism underscores their importance throughout eukaryota.

While much is known about the composition of SGs, the regulation of SG formation is not completely understood. In mouse cells, arsenite activates the heme-regulated inhibitor kinase HRI, and HRI-mediated phosphorylation of eIF2α is essential for SG formation in response to arsenite (McCwren et al. 2005). However, SGs form in response to diverse stresses including heat shock, UV irradiation, and energy starvation caused by nutrient deprivation or mitochondrial poisons. It is not clear whether all of these stresses are P-eIF2α-dependent, or which kinases mediate eIF2α phosphorylation under each specific stress condition.

Here we provide the first analysis of SG formation in response to arsenite and heat shock in Drosophila cells. The dynamics and composition of Drosophila SGs reveal their close relationship with mammalian SGs. However, while arsenite-induced SGs are dependent upon eIF2α phosphorylation mediated primarily through the stress responsive kinase PEK, heat shock SGs form by a P-eIF2α-independent mechanism. In contrast, we report that heat-induced SGs are P-eIF2α-dependent in mammalian cells, suggesting that flies and mammals utilize alternative mechanisms for responding to thermal stress.

RESULTS AND DISCUSSION

Dynamic poly(A)+ RNA granules form in stressed Drosophila cells

Given the importance of SGs in stress response pathways, we investigated SG occurrence in Drosophila. In untreated S2R+ cells, poly(A)+ RNA is evenly distributed throughout the cytoplasm (Fig. 1A). Treatment with the SG-inducing drug arsenite for 1 h (Fig. 1A) or heat shock at 40°C or 42°C for 1 h (Fig. 1B) causes poly(A)+ RNA-containing granules to appear within the cytoplasm, appearing in ~81% of arsenite-treated cells and 83% of cells at 40°C (Supplemental Fig. S1C). Arsenite treatment produces identical results in a second Drosophila cell line Kc167 (data not shown), indicating that the granule formation is not specific to S2R+ cells. After 2 h of arsenite treatment, mRNA processing or export is inhibited, as evidenced by increased nuclear poly(A)+ RNA (Fig. 1A; Supplemental Fig. S1A,B). Removing arsenite after 2 h of exposure allowed poly(A)+ RNA granules to dissolve within 2 to 3 h. Interestingly, while granules formed at 40°C heat shock dissolve within 2 h, those formed at 42°C heat shock do not (Fig. 1B).

Phosphorylation of eIF2α is a hallmark of cellular stress and translational arrest. We assessed the phosphorylation state of eIF2α in cells treated with arsenite or heat shock. One hour of arsenite treatment causes a marked increase in phosphorylated (P) -eIF2α (Fig. 1C), which persists until the SGs are fully dissolved at 3 h post-removal of the drug. While P-eIF2α levels are slightly increased after 37°C or 40°C heat shock, P-eIF2α is decreased dramatically at 42°C (Fig. 1D). It is possible that phosphorylation is totally inhibited at this temperature, or that eIF2α is phosphorylated early during the stress and subsequently dephosphorylated. To distinguish between these two possibilities, cells were subjected to 40°C or 42°C heat shock and samples were taken for Western blot every 15 min to assess for P-eIF2α (Fig. 1E). In fact, eIF2α is phosphorylated within 15 min of heat shock. This phosphorylation peaks at 30 min, then decreases after 1 h of heat shock.

To determine whether the decrease in P-eIF2α was due to rapid dephosphorylation or to degradation of eIF2α, cells were pretreated with okadaic acid (OA), a potent phosphatase inhibitor, or the proteasome inhibitor MG132, for 3 h and then heat-shocked at 40°C or 42°C for 1 h (Fig. 1F). While MG132 had little or no effect on P-eIF2α levels, OA significantly stabilized P-eIF2α at 40°C and 42°C. MG132 treatment is efficient in these cells, as shown by accumulation of higher molecular weight ubiquitin conjugates (Fig. 1G). Thus, eIF2α is rapidly dephosphorylated under conditions of moderate to severe heat shock.

Notably, P-eIF2α levels in the heat shock time courses peak at 30 min, the time at which heat shock-induced poly(A)+ RNA granules begin to form (data not shown). In contrast, arsenite induces sustained P-eIF2α levels that do not decrease until the stress is removed and SGs are dissolved (Fig. 1A,C). It seems therefore that, while P-eIF2α levels are well correlated with poly(A)+ RNA granule formation under arsenite stress, P-eIF2α is not correlated with the formation of heat-induced granules, suggesting that heat shock and P-eIF2α are uncoupled in the Drosophila system.
et al. 2005; Wilczynska et al. 2005), suggesting that the position of cytoplasmic bodies precisely mirrors the relationship from, but often adjacent to, PBs (Fig. 2B). This juxtaposition of cytoplasmic bodies precisely mirrors the relationship between SGs and PBs in mammalian cells (Kedersha et al. 2005; Wilczynska et al. 2005), suggesting that FMR1-containing granules are largely distinct from mRNA granules in Drosophila cells. (A) 500 μM arsenite was applied to S2R + cells for times indicated, or applied for 2 h then removed and recovered for times indicated, then cells were fixed and hybridized with Cy3-Oligo-dT(30) to visualize poly(A)+ RNA. (B) S2R + cells were incubated at the indicated temperatures for 1 h, or incubated for 1 h followed by 2 h of recovery, then processed for RNA visualization as in A. Bars, 5 μm. (C,D) Western blots of arsenite (C) and heat shock (D) time course samples, parallel to those shown in A and B, respectively. P-2α/total is the ratio of the density of the P-eIF2α bands divided by total eIF2α bands, normalized to the control lane. (E) S2R + cells were heat-shocked as indicated, and then processed for Western blot. (F) S2R + cells were pre-incubated with MG132 (MG) at 100 μM for 3 h, or 75 nm of okadaic acid (OA) for 3 h, then heat-shocked for 1 h and processed for Western blot. (G) A replicate of the −/+ MG132, 25°C samples from panel F (lanes 1,2) was processed for Western blot and probed with anti-ubiquitin antibody.

FIGURE 1. Arsenite or heat shock causes the formation of reversible, cytoplasmic, poly(A)+ RNA granules in Drosophila cells. (A) 500 μM arsenite was applied to S2R+ cells for times indicated, or applied for 2 h then removed and recovered for times indicated, then cells were fixed and hybridized with Cy3-Oligo-dT(30) to visualize poly(A)+ RNA. (B) S2R+ cells were incubated at the indicated temperatures for 1 h, or incubated for 1 h followed by 2 h of recovery, then processed for RNA visualization as in A. Bars, 5 μm. (C,D) Western blots of arsenite (C) and heat shock (D) time course samples, parallel to those shown in A and B, respectively. P-2α/total is the ratio of the density of the P-eIF2α bands divided by total eIF2α bands, normalized to the control lane. (E) S2R+ cells were heat-shocked as indicated, and then processed for Western blot. (F) S2R+ cells were pre-incubated with MG132 (MG) at 100 μM for 3 h, or 75 nm of okadaic acid (OA) for 3 h, then heat-shocked for 1 h and processed for Western blot. (G) A replicate of the −/+ MG132, 25°C samples from panel F (lanes 1,2) was processed for Western blot and probed with anti-ubiquitin antibody.

Drosophila stress-induced poly(A)+ RNA granules contain homologs of mammalian SG factors

In order to determine that Drosophila poly(A)+ RNA granules were in fact bona fide SGs, we co-localized the granules with known SG markers. The human fragile X mental retardation proteins FMRP and FXR1 localize to mammalian SGs (Mazroui et al. 2002; Linder et al. 2008). We assessed the localization of the Drosophila homolog FMR1 in stressed cells, and found that FMR1 and poly(A)+ RNA are co-localized in cytoplasmic granules after exposure to arsenite or 40°C heat shock (Fig. 2A). Processing bodies (PBs) are constitutive cytoplasmic granules that are sites of mRNA silencing and decay (Eulalio et al. 2007) and that increase in size and frequency during stress (Kedersha et al. 2005). Co-staining of arsenite-treated or heat-shocked cells with FMR1 and DCPI, an endogenous marker of PBs, revealed that FMR1-containing granules are largely distinct from, but often adjacent to, PBs (Fig. 2B). This juxtaposition of cytoplasmic bodies precisely mirrors the relationship between SGs and PBs in mammalian cells (Kedersha et al. 2005; Wilczynska et al. 2005), suggesting that FMR1-containing granules are largely distinct from mRNA granules in Drosophila cells. (A) 500 μM arsenite was applied to S2R+ cells for times indicated, or applied for 2 h then removed and recovered for times indicated, then cells were fixed and hybridized with Cy3-Oligo-dT(30) to visualize poly(A)+ RNA. (B) S2R+ cells were incubated at the indicated temperatures for 1 h, or incubated for 1 h followed by 2 h of recovery, then processed for RNA visualization as in A. Bars, 5 μm. (C,D) Western blots of arsenite (C) and heat shock (D) time course samples, parallel to those shown in A and B, respectively. P-2α/total is the ratio of the density of the P-eIF2α bands divided by total eIF2α bands, normalized to the control lane. (E) S2R+ cells were heat-shocked as indicated, and then processed for Western blot. (F) S2R+ cells were pre-incubated with MG132 (MG) at 100 μM for 3 h, or 75 nm of okadaic acid (OA) for 3 h, then heat-shocked for 1 h and processed for Western blot. (G) A replicate of the −/+ MG132, 25°C samples from panel F (lanes 1,2) was processed for Western blot and probed with anti-ubiquitin antibody.

Drosophila SGs and PBs exist in a similar dynamic relationship whereby protein and mRNA components are shuttled between the two bodies.

Under arsenite or heat shock conditions, FMR1 co-localizes in cytoplasmic granules with other known SG components including endogenous eIF4E (Fig. 2E), and with exogenous V5-eIF3 S9 (eIF3b) (Fig. 2F), GFP-PABP (Fig. 2G), and GFP-Rox8 (Fig. 2H). Rox8 is the Drosophila homolog of TIA-1, one of the first mammalian proteins found to localize to SGs (Kedersha et al. 1999), and shown to regulate their formation by auto-aggregation (Gilks et al. 2004). Notably, FMR1 does not co-localize with the large ribosomal subunit protein RPL P0 in stressed cells (Fig. 2C; Supplemental Fig. S2A), but does co-localize with the 18S RNA of the small ribosomal subunit (Fig. 2D; Supplemental Fig. S2B). These data are consistent with the idea that these granules are comprised of arrested translational initiation complexes and disassembled polysome components, and contain 40S but not 60S ribosomes. Thus, the components of Drosophila poly(A)+ RNA-containing granules are consistent with those of mammalian SGs.

SGs exist in equilibrium with polysomes in mammalian cells, and polysome disassembly is required for SG formation (Kedersha et al. 2000). To assess *Drosophila* stress-induced poly(A)+ RNA granules for this functional criterion, we analyzed polysome profiles from stressed cells. S2R+ cells were pretreated with the translation elongation inhibitor cyclohexamide (CHX), which prevents ribosome dissociation from mRNA, or left untreated, and then followed by arsenite or heat shock. Arsenite treatment induced P-eIF2α (Fig. 3D, lane 2), and caused polysome disassembly (Fig. 3A). Pretreatment of cells with CHX inhibited polysome disassembly (Fig. 3B) and inhibited the formation of polysomes in stressed cells (Fig. 3C) but did not prevent eIF2α phosphorylation (Fig. 3D, lane 4), nor did it prevent the nuclear RNA accumulation seen in arsenite-treated cells (Fig. 3C, panel 4). In fact, P-eIF2α is undetectable in cyclohexamide-treated cells, which may be an attempt by the cell to compensate for the translational arrest caused by the drug. We conclude that arsenite-induced polysome disassembly is required for poly(A)+ RNA granule formation.

Similarly, heat shock-induced polysome disassembly (Fig. 3E) was also blocked by CHX pretreatment (Fig. 3F),
as was the formation of poly(A)$^+$ RNA granules (Fig. 3G). P-eIF2α was slightly elevated in the heat shock samples as seen previously (Fig. 3H), and this was not affected by CHX treatment. Taken together, the results of Figures 1, 2, and 3 demonstrate the dynamic formation of stress-induced cytoplasmic granules in Drosophila cells consistent with the defining characteristics of mammalian SGs. Hereafter we will refer to these Drosophila granules as SGs.

Arsenite SGs, but not heat shock SGs, require P-eIF2α in Drosophila

Mammalian cells have four eIF2α kinases: GCN2, PEK/PERK, PKR, and HRI. Drosophila, however, have only two eIF2α kinases: GCN2 and PEK. To assess which Drosophila eIF2α kinase mediates SG formation in response to arsenite or heat shock, we used double-stranded (ds)RNA to deplete cells of either or both kinases, then assessed whether the depleted cells could form SGs. S2R$^+$ cells were treated with dsRNAs targeting PEK, GCN2, or both, for 4 d, then exposed to arsenite or heat shock. Quantitative real-time PCR was used to monitor the knockdown efficiency of the PEK and GCN2 dsRNAs (Fig. 4C). At 4 d of dsRNA treatment, PEK and GCN2 mRNAs were depleted to 10% and 15% of control GFP dsRNA-treated levels, respectively.

When treated with a negative control dsRNA targeting GFP, \sim70% of cells responded to arsenite by forming SGs (Fig. 4A). Upon knockdown of PEK, only \sim40% of cells exhibited SGs, whereas GCN2 knockdown reduced SG formation to \sim50%. Strikingly, double depletion of PEK and GCN2 reduced SG formation to $<25%$. Western blot analysis of parallel samples revealed that knockdown of PEK had a more significant effect on reducing P-eIF2α in arsenite treated cells, whereas GCN2 knockdown had only a modest effect (Fig. 4B, center panel). This result suggests that PEK is the main eIF2α kinase activated by arsenite, whereas GCN2 plays a more secondary role.

After heat shock, \sim95% of control GFP dsRNA-treated cells form SGs. This percentage was not significantly affected by knockdown of either or both of the eIF2α kinases (Fig. 4A). As in previous experiments, a modest increase in P-eIF2α was seen upon heat shock (Fig. 4B, right panel), and this amount was almost entirely eliminated by PEK or double PEK/GCN2 knockdown. The elimination of P-eIF2α did not affect SG formation in response to heat shock, suggesting that heat shock mediates SG formation independently of P-eIF2α in Drosophila cells.

Mammalian heat shock SG assembly is P-eIF2α-dependent

Our Drosophila results suggest that robust heat shock activates a P-eIF2α-independent stress response resulting in SG assembly. To determine whether heat shock-induced SGs are P-eIF2α-independent in mammalian cells, we asked whether heat shock could induce SG formation in murine embryonic fibroblasts (MEFs) containing a non-phosphorylatable mutant form (Ser51Ala) of eIF2α (Scheuner 2002).
induced SGs in trypanosomes are also eIF2α inhibit SG formation (Grousˇl et al. 2009). Similarly, heat-deletion of the sole yeast eIF2α SGs are not regulated by eIF2α recent study in S. cerevisiae ing to heat shock has only partially been addressed. A which induces SG formation independently of P-eIF2α and Kedersha 2008), we treated the cells with pateamine A, ubiquitinylation, or motor proteins (for review, see Anderson polysome disassembly such as O-GlcNAc modification, that the Ser51Ala MEFs are not impaired in other post-SGs in the U2OS cells (Fig. 4D, center panels). To insure Other SG markers (data not shown) including FXR1, eIF3b and eIF4E, the Ser51Ala MEFs did not form SGs. 1818 RNA, Vol. 15, No. 10 derivied U2OS cells containing wild-type eIF2α et al. 2001). Ser51Ala MEFs were co-plated with human- with 500 μM arsenite (A, gray trace) or heat shock at 40°C for 1 h (E, gray trace). Where indicated, cells were treated with CHX (50 μg/ml) for 3 h (B, black traces) or pretreated with CHX for 2 h followed by 1 h of arsenite (B, gray trace) or heat shock at 40°C (F, gray trace). (C,G) Parallel samples to those in A–B and E–F were hybridized with Cy3-Oligo-dT(30) to visualize SGs. Bars, 5 μm. (D,H) Western blots of parallel samples to those in C and G. Bands shown are from the same film and exposure for each antibody; Intermediate lanes containing irrelevant samples were removed for simplicity.

FIGURE 3. Polysome disassembly is required for the formation of Drosophila SGs. (A,B,E,F) Sucrose gradient analysis of polysomes. S2R+ cells were untreated (A,E, black traces) or treated with 500 μM arsenite (A, gray trace) or heat shock at 40°C for 1 h (E, gray trace). Where indicated, cells were treated with CHX (50 μg/ml) for 3 h (B, black traces) or pretreated with CHX for 2 h followed by 1 h of arsenite (B, gray trace) or heat shock at 40°C (F, gray trace). (C,G) Parallel samples to those in A–B and E–F were hybridized with Cy3-Oligo-dT(30) to visualize SGs. Bars, 5 μm. (D,H) Western blots of parallel samples to those in C and G. Bands shown are from the same film and exposure for each antibody; Intermediate lanes containing irrelevant samples were removed for simplicity.

While heat-induced SG formation has been studied in several organisms, the specific role of P-eIF2α in responding to heat shock has only partially been addressed. A recent study in S. cerevisiae indicated that yeast heat shock SGs are not regulated by eIF2α phosphorylation, as deletion of the sole yeast eIF2α kinase, Gcn2p, did not inhibit SG formation (Grouš et al. 2009). Similarly, heat-induced SGs in trypanosomes are also eIF2α-independent (Kramer et al. 2008), as mutant trypanosomes with an eIF2α Thr169Ala mutation still formed SGs in response to heat shock. Thr169 is thought to be functionally analogous to Ser51 in other eukaryotes, although it has not yet been directly demonstrated that phosphorylation of trypanosome eIF2α at Thr169 is a physiologically relevant mode of translational control in response to stress in this organism.

The results of Figure 4 indicate that heat shock SGs are P-eIF2α-independent in Drosophila, but are P-eIF2α-dependent in mammalian cells. What is the source of this difference? We propose that metabolic control of thermoregulation may lie at the heart of this question. Drosophila, yeast, and trypanosomes are ectothermic organisms that must display a significant range of thermal tolerance in order to adapt to the temperature of their environment. Mammals utilize vast cellular resources to maintain an optimal internal temperature, and it is therefore critical for their heat stress response pathways to be tightly regulated. Somewhere during the evolution of thermogenesis in mammals, the heat shock response may have become tied into translational control pathways via one or several of the eIF2α kinases, providing an additional means for genetic regulation during heat stress.

In summary, this work provides the first analysis of Drosophila SGs. We show that Drosophila has at least two different mechanisms for SG formation: a P-eIF2α-dependent mechanism activated by arsenite primarily via PEF, and a P-eIF2α-independent mechanism activated by heat shock (Fig. 4E). Additionally, we show heat shock SG formation is P-eIF2α-dependent in mammalian cells, suggesting that a more direct connection between heat shock and eIF2α arose during evolution, possibly concurrent with the development of thermogenesis.

MATERIALS AND METHODS

Reagents, cell lines, and plasmids

S2R+ cells were cultured at 25°C in Schneider’s Drosophila medium (Invitrogen) supplemented with 10% fetal bovine serum and penicillin/streptomycin. Coding regions of eIF3 S9, PABP, and Rox8 were amplified from S2R+ cDNA, and inserted in frame into pAc5.1-GFP at the 3’ end of the EGFP coding region (for PABP and Rox8), or into pAc5.1 in frame with the V5/His tag (for eIF3 S9) as previously described (Farny et al. 2008) using the primers listed in Supplemental Table S1. Sodium meta-arsenite, MG132, and cycloheximide were purchased from Sigma Aldrich. Okadaic acid was purchased from Calbiochem. DMDA-pateamine
A was a kind gift from Jun Liu (Johns Hopkins University). For transient transfections, S2R+ cells were transfected with Effectene (Qiagen) per the manufacturer’s protocols as described (Farny et al. 2008). Cells were processed 20 h post-transfection.

dsRNA production and RNAi

dsRNAs were produced as described (Farny et al. 2008) based on amplicons designed by the Drosophila RNAi Screening Center at Harvard Medical School (http://flyrnai.org). DNA amplicons for dsRNA templates were amplified from S2R+ cDNA (or for GFP dsRNA, from the plasmid pAc5.1-GFP) using the primers listed in Supplemental Table S1. RNAi assays were performed essentially as described (Farny et al. 2008). Briefly, 1.5 × 10⁶ cells were plated in 300 μL serum free media; 8 μg dsRNA were added and incubated for 30 min. Cells were then supplemented with 900 μL complete culture media and incubated at 25°C for ~4 d.

SG formation assay

After dsRNA treatment as described above, S2R+ cells were stress-treated, scrape-harvested, and processed for poly(A)+ fluorescence.
in situ hybridization (FISH). Coverslips containing experimental samples were mounted on individual slides, and slides were then blindly, imaged, and scored. At least four fields and at least 100 cells were imaged for each blinded sample. The cells in the images were then counted manually as SG-positive or SG-negative. SGs are generally 0.2–1.0 μm in diameter and vary widely from 4 to 15 or more per cell. An individual cell had to contain at least three poly(A)’ granules of typical SG size to be counted as positive. The experiment was repeated three times. Similar results were obtained when using anti-FMR1 antibody as a SG marker instead of poly(A)’ RNA.

Immunofluorescence staining and in situ hybridization

After transfection and/or drug treatment, S2R+ cells were fixed in 2% paraformaldehyde in PBS + 0.5% TX-100 for 5 min, then 4% paraformaldehyde in PBS for 10 min. Antibody staining or in situ hybridization was performed on fixed cells as described (Farny et al. 2008). Immunofluorescence of mammalian cells was performed as described (Kedersha et al. 2005). Antibodies for immunofluorescence microscopy were obtained as follows: rabbit-anti-delF4E was a kind gift from P. Lasko (McGill University); rabbit-anti-Dcp1 was a kind gift from J. Lykke-Anderson (University of Colorado); human-anti-ribosomal protein P0 (Immunovision); rabbit-anti-V5 (Sigma Aldrich); goat-anti-dFMRI1, goat-anti-eIF2α, and mouse-anti-eIF4E (Santa Cruz Biotechnology); donkey-anti-rabbit Cy2, donkey-anti-mouse Cy2, donkey-anti-goat Cy2, donkey-anti-goat Cy3 (Jackson ImmunoResearch); Alexa488-WGA (Invitrogen); Cy3-Oligo-dT(30) and Cy3-18S rRNA probes (1 mg/mL; Integrated DNA Technologies). Probe sequences for Cy3-18S rRNA probes are listed in Supplemental Table S1. Images of S2R+ cells were taken on a Nikon TE2000 inverted fluorescence microscope with 3W laser spinning disk confocal and a 100x Plan-Apo lens, acquired with a digital camera (Hamamatsu) and processed using MetaMorph software (Molecular Devices). Images shown are single Z-sections. Images of mammalian cells were taken on a wide-field fluorescence microscope (model Eclipse E800; Nikon) with epifluorescence optics, a 60X oil immersion lens, and a digital camera (model CCD-SPOT RT; Diagnostic Instruments). All images were compiled for figures using Adobe Photoshop CS3 software.

Western blot analysis

Western blots were performed as described (Farny et al. 2008). Antibodies for Western blot were used at the following dilutions: rabbit-anti-eIF2α P-ser52 (Abcam), 1:1000; rabbit-anti-eIF2α (Abcam), 1:1000; mouse-anti-ubiquitin (Santa Cruz Biotechnology), 1:1000; donkey-anti-rabbit (light chain specific) horseradish peroxidase (HRP) or donkey-anti-mouse HRP (Jackson Immuno-Research), 1:5000. Band densitometry was performed using Quantity One software (Bio-Rad).

Sucrose gradient analysis of polysomes

Polysome analysis was performed as described (Farny et al. 2008), with the following changes: after arsenite or heat shock treatment, cells were incubated in 100 μg/mL cycloheximide for 10 min, then pelleted and lysed in polysome lysis buffer containing RNase inhibitors.

Quantitative real-time PCR

Quantitative real-time PCR was performed and analyzed as described (Farny et al. 2008) using the primer sets listed in Supplemental Table S1.

SUPPLEMENTAL MATERIAL

Supplemental material can be found at http://www.rnajournal.org.

ACKNOWLEDGMENTS

We thank J. Lykke-Anderson and P. Lasko for the antibodies, J. Lui for DMDA-PatA, J. Hurt for critical reading of this manuscript, and the members of the Silver and Anderson laboratories for advice and support. This work was supported by NIH grant GM057476 to P.A.S. N.L.K. was supported by NIH RO1 AI 033600.

Received April 9, 2009; accepted June 30, 2009.

REFERENCES

Metazoan stress granule assembly is mediated by P-eIF2α-dependent and -independent mechanisms

Natalie G. Farny, Nancy L. Kedersha and Pamela A. Silver

RNA 2009 15: 1814-1821 originally published online August 6, 2009
Access the most recent version at doi:10.1261/rna.1684009

Supplemental Material
http://rnajournal.cshlp.org/content/suppl/2009/07/30/rna.1684009.DC1.html

References
This article cites 24 articles, 17 of which can be accessed free at:
http://rnajournal.cshlp.org/content/15/10/1814.full.html#ref-list-1

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.

To subscribe to RNA go to:
http://rnajournal.cshlp.org/subscriptions

Copyright © 2009 RNA Society